NMN 和 NR: 这些 NAD + 前体是如何测量的


NMN and NR: How These NAD+ Precursors Measure Up

NR is often thought of as a highly efficient precursor to NAD+, but its cousin molecule NMN, while not an ingredient in Basis, is raising eyebrows as the new kid on the block.

NR 通常被认为是 NAD + 的高效前体,但是它的近亲分子 NMN 虽然不是 Basis 的成分,但是作为一个新的孩子在街区上引起了人们的注意。


Moving into a new home is never easy. Just because a large bed can fit inside a bedroom doesn’t mean it’ll fit through the door of the room. So it’s typical for beds to come in parts that need to be disassembled to make it through a door and then reassembled once inside.


The same can be said for nicotinamide mononucleotide, a molecule called NMN for short. NMN is a precursor to NAD+, or nicotinamide adenine dinucleotide, meaning it becomes NAD+ through a series of chemical transformations. NAD+ is a critical found in every cell of your body, but levels of NAD+ naturally fall with age, making it — and NMN, as a result — crucial.

对于烟酰胺单核苷酸,一种简称 NMN 的分子,也可以这样说。是 NAD + 或烟酰胺腺嘌呤二核苷酸的前身,意味着它通过一系列化学转化成 NAD + 。NAD + 在你身体的每个细胞中都是重要的,但是 NAD + 的水平会随着年龄的增长而自然下降,因此它和 NMN 都是至关重要的。

However, NMN is like a large bed that movers are trying to get through a door: It doesn’t enter the cell easily. One way for NMN to enter the cell is for it to chemically transform into another molecule (called nicotinamide riboside, or NR) before it can enter the cell. NR has earned a name for itself as a highly efficient precursor to NAD+ and can enter the cell as is. NMN, meanwhile, sometimes becomes NR before entering the cell, where it chemically transforms back to NMN and then ultimately becomes NAD+.

然而,NMN 就像一个大床,搬运工人正试图通过一扇门: 它不容易进入细胞。NMN 进入细胞的一种方式是在它进入细胞之前,通过化学方式转化成另一种分子(称为烟酰胺核糖苷或 NR)。作为 NAD + 的高效前体,NR 已经为自己赢得了一个名字,并且可以按原样进入细胞。同时,NMN 在进入细胞之前有时会变成 NR,在那里它会发生化学转变回 NMN,最终成为 NAD + 。

We’ve learned that NR leads to NAD+ and that it also has its own pathway that bypasses various steps other NAD+ precursors have to take. In early 2019, though, new research revealed NMN might only have to become NR for certain cell types, as NMN can enter cells in the small intestine of mice. It’s unclear whether or how this will translate to humans, if at all, but it’s teed up NMN as the newer kid on the block, making many wonder: How does it stack up against NR?

我们已经了解到 NR 导致 NAD + ,并且它也有自己的路径,绕过其他 NAD + 前体必须采取的各种步骤。然而,在2019年初,新的研究表明 NMN 对于某些类型的细胞可能只需要变成 NR,因为 NMN 可以进入小鼠小肠的细胞。目前还不清楚这是否或如何将转化为人类,如果有的话,但它的组成 NMN 作为新的孩子在块,使许多人想知道: 如何堆栈相对于 NR?

NR vs NMN Molecule

NR 与 NMN 分子的比较

Pitting NR and NMN against each other is, for now, somewhat of a moot point because the two molecules have never been studied side by side in humans. The biggest, and most obvious, difference between NMN and NR is size. NMN is simply larger than NR, meaning it often needs to be broken down to fit into the cell. NR, when compared to other NAD+ precursors (like nicotinic acid or nicotinamide) reigns supreme in efficiency.

使 NR 和 NMN 相互竞争的问题,目前还没有定论,因为这两种分子从来没有在人类身上并排研究过。NMN 与 NR 最大、最明显的区别是粒径。NMN 比 NR 简单地大,这意味着它经常需要被分解以适应细胞。与其他 NAD + 前体(如烟酸或烟酰胺)相比,NR 的效率最高。Nmn Pathways Graph2

But give NMN a new door, one it can fit through, and it’s a whole new game. This is where cellular transporters come into play. Transporters are proteins that are doors on the cell; they allow molecules to enter the cell without needing to chemically transform.

但是给 NMN 一个新的门,一个它可以适应,它是一个全新的游戏。这就是细胞转运体发挥作用的地方。转运蛋白是细胞上的门蛋白质,它们允许分子进入细胞而不需要化学转化。

The latest research from Shin-ichiro Imai, M.D., Ph.D., a professor of developmental biology at Washington University in St. Louis, identified a transporter that allows NMN to get into the cell without converting to NR. The catch? The transporter is only on cells located in the gut of mice and only works in the presence of sodium ions. NR, however, has been shown to enter cells in the liver, muscle, and brain tissue of mouse models. (To date there is not yet evidence that these mouse studies can be extrapolated to humans) But again, the two have never been matched up against each other in a way that can truly identify one as superior to the other.

圣路易斯华盛顿大学的发育生物学教授 Shin-ichiro Imai 博士的最新研究确定了一种转运蛋白,它能使 NMN 进入细胞而不转化为 NR。条件是什么?这种转运蛋白只存在于小鼠肠道内的细胞中,并且只在钠离子存在的情况下才起作用。然而,已经证明 NR 可以进入小鼠模型的肝脏、肌肉和脑组织的细胞。(到目前为止,还没有证据表明这些小鼠研究可以推断到人类)但是,这两者从来没有以一种真正能够确定其中一个优于另一个的方式彼此匹配。

Sign up for Our Elysium Newsletter


Get more information about Elysium, Basis, and our science.

获取更多关于极乐世界、基础和我们的科学的信息。Email Address 电邮地址Subscribe 订阅

Why We Need NR and NMN

为什么我们需要 NR 和 NMN

So you might be wondering: Why should I care? What does it matter that these molecules get into the cell a certain way and how they do it? NR and NMN are both beneficial because they elevate levels of NAD+, which decline with age. NAD+ is vital to cellular metabolism, turning nutrients into cellular energy, and it also activates sirtuins, a set of proteins that regulate cellular health. We all get NAD+ in our bodies thanks to our diet, by consuming foods with NAD+ precursors in them. While NR and NMN can be found in trace amounts in various foods, though, one can’t eat enough of anything to boost NAD+ levels. As a result, supplementing with an NAD+ precursor can help mitigate the decline.

所以你可能会想: 我为什么要在乎?这些分子以特定的方式进入细胞又有什么关系呢?硝酸还原酶和硝酸还原酶都是有益的,因为它们提高了 NAD + 的水平,而 NAD + 随着年龄的增长而下降。NAD + 对于细胞新陈代谢至关重要,它将营养物质转化为细胞能量,并且它还能激活一组调节细胞健康的蛋白质—- 去乙酰化酶。由于我们的饮食,通过食用含有 NAD + 前体的食物,我们的体内都会产生 NAD + 。虽然 NR 和 NMN 可以在各种食物中找到微量的含量,但是,一个人不能吃足够的任何东西来提高 NAD + 的水平。因此,补充 NAD + 前体可以帮助减缓衰退。

Animal studies showed that supplementing NR and NMN could provide other myriad benefits as a result of boosting NAD+, but to date there is not yet evidence that these animal studies can be extrapolated to humans.

动物研究表明补充 NR 和 NMN 可以作为提高 NAD + 的结果提供其他无数的好处,但迄今为止还没有证据表明这些动物研究可以推断到人类。

At the end of the day, though, what we know is that when compared to other precursors, NR is the highly efficient one of the bunch. The latest research on NMN could prime it to be the next great vitamin B3, but for now, more research in humans is needed to better understand how beneficial it could be and how it might stack up against NR. One possibility is that each precursor could provide varying benefits depending on the target, especially if transporters, like the recently discovered one in the gut, are only available in specific cells in the body.

尽管如此,我们所知道的是,与其他前驱物相比,NR 是高效的。关于 NMN 的最新研究可能使它成为下一个伟大的维生素 b 3,但目前,需要对人类进行更多的研究,以更好地了解它可能有多大的益处,以及它可能如何与 NR 相抗衡。一种可能性是,每个前体可以提供不同的利益取决于目标,特别是如果转运体,像最近在肠道中发现的一个,只有在特定的细胞在体内。

For now, there are a lot of unknowns about which doors may open for these precursors in the future, and what they could open up to.



您的电子邮箱地址不会被公开。 必填项已用*标注